
 
 
 

Electrical Engineering and Computer Science Department  
 

Technical Report 
NWU-EECS-07-02 
February 3, 2006 

 
Network-based and Attack-resilient Length Signature Generation for Zero-day 

Polymorphic Worms 
 

Zhichun Li, Lanjia Wang, Yan Chen and Zhi (Judy) Fu 
 
 
 

Abstract 
 

It is crucial to detect zero-day polymorphic worms and to generate signatures at the edge 
network gateways or honeynets so that we can prevent the worms from propagating at 
their early phase. However, most existing network-based signatures generated are not 
vulnerability based and can be easily evaded under attacks. In this paper, we propose to 
design vulnerability based signatures without any host-level analysis of worm execution 
or vulnerable programs. As the first step, we design a network-based Length-based 
Signature Generator (LESG) for worms based on buffer overflow vulnerabilities. The 
signatures generated are intrinsic to buffer overflows, and are very hard for attackers to 
evade. We further prove the attack resilience bounds even under worst case attacks with 
deliberate noise injection. Moreover, LESG is fast, noise-tolerant, and has efficient 
signature matching. Evaluation based on real-world vulnerabilities of various protocols 
and real network traffic demonstrates that LESG is promising in achieving these goals. 
 
 
 
Keywords:  zero-day vulnerability; polymorphic worm; worm signature generation; network intrusion 
detection/prevention system (IDS/IPS); protocol field length based signature 



Network-based and Attack-resilient Length Signature Generation for
Zero-day Polymorphic Worms

Zhichun Li, Lanjia Wang†, Yan Chen and Zhi (Judy) Fu‡
Northwestern University, Evanston, IL, USA

†Tsinghua University, Beijing, China
‡Motorola Labs, Schaumburg IL, USA

Abstract
It is crucial to detect zero-day polymorphic worms and to generate signatures at the edge network

gateways or honeynets so that we can prevent the worms from propagating at its early phase. However,
most existing network-based signatures generated are not vulnerability based and can be easily evaded
under attacks. In this paper, we propose to design vulnerability based signatures without any host-level
analysis of worm execution or vulnerable programs. As the first step, we design a network-based Length-
based Signature Generator (LESG) for worms based on buffer overflow vulnerabilities1. The signatures
generated are intrinsic to buffer overflows, and are very hard for attackers to evade. We further prove the
attack resilience bounds even under worst case attacks with deliberate noise injection. Moreover, LESG is
fast, noise-tolerant, and has efficient signature matching. Evaluation based on real-world vulnerabilities of
various protocols and real network traffic demonstrates that LESG is promising in achieving these goals.

1 Introduction
Attacks are commonplace in today’s networks, and identifying them rapidly and accurately is critical for
large network/service operators. It was estimated that malicious code (viruses, worms and Trojan horses)
caused over $28 billion in economic losses in 2003, and will grow to over $75 billion in economic losses by
2007 [2]. The intrusion detection systems (IDSes) [3, 4] are proposed to defend against malicious activities
by searching the network traffic for known patterns, or signatures. So far such signatures for the IDSes
are usually generated manually or semi-manually, a process too slow for defending against self-propagating
malicious codes, or worms.

Thus, it is critical to automate the process of worm detection, signature generation and signature dispersion
in the early phase of worm propagation, especially at the network level (gateways and routers). There is some
existing work towards this direction [5–7].

However, to evade detection by signatures generated with these schemes, attackers can employ polymor-
phic worms which change their byte sequence at every successive infection. Recently, some polymorphic
worm signature generation schemes are proposed. Based on characteristics of the generated signatures, they
can be broadly classified into two categories – vulnerability-based and exploit-based. The former signature is
inherent to the vulnerability that the worm tries to exploit. Thus it is independent of the worm implementation,
unique and hard to evade, while exploit-based signatures captures certain characteristics of a specific worm
implementation. However, schemes of both categories have their limitations.

Existing vulnerability-based signature generation schemes are host-based and cannot be applied for
detection at the network router/gateway level. These schemes [8–10] either require exploit code execution
or the source/binary code of the vulnerable program for analysis. However, such host-level schemes are
too slow to counteract the worms that can propagate at exponential speed. Given rapid growth of network
bandwidth, today’s fast propagation of viruses/worms can infect most of the vulnerable machines on the
Internet within ten minutes [11] or even less than 30 seconds with some highly virulent techniques [12, 13] at
near-exponential propagation speed. At the early stage of worm propagation, only a very limited number of

1It is reported that more than 75% of vulnerabilities are based on buffer overflow [1].

1



worm samples are active on the Internet and the number of machines compromised is also limited. Therefore,
signature generation systems should be network-based and deployed at high-speed border routers or gateways
where the majority of traffic can be observed. Such requirement of network-based deployment severely limits
the design space for detection and signature generation as discussed in Section 2.

Existing exploit-based schemes are less accurate and can be evaded. Some of these schemes are
network-based and are much faster than those in the former category. However, most of the schemes are
content-based which aim to exploit the residual similarity in the byte sequences of different instances of
polymorphic worms [14–18]. However, as mentioned in [18], there can be some worms which do not have any
content-based signature at all. Furthermore, various attacks have been proposed to evade the content-based
signatures [19–22]. The rest of them [23, 24] generate signatures based on exploit code structure analysis,
which is not inherent to the vulnerability exploited and can also be evaded [19].

Therefore, our goal is to design a signature generation system which has both the accuracy of
vulnerability-based scheme and the speed of exploit-based scheme so that we can deploy it at the network
level to thwart zero-day polymorphic worm attacks. As the first step towards this ambitious goal, we propose
LEngth-based Signature Generator (called LESG) which is a network-based approach for generating effi-
cient and unevadable length-based signatures. That is, even when the attacker know what the signatures are
and how the signatures are generated, they still cannot find efficient and effective way to evade the signatures.

Length-based signatures target buffer overflow attacks which constitutes the majority of attacks [1]. The
key idea is that in order to exploit any buffer overflow vulnerabilities, the length of certain protocol fields must
be long enough to overflow the buffer. A buffer overflow vulnerability happens when there is a vulnerable
buffer in the server implementation and some part of the protocol messages can be mapped to the vulnerable
buffer. When an attacker injects an overrun string input for the particular field of the protocol to trigger the
buffer overflow, the length of such input for that field is usually much longer than those of the normal requests.
Thus we can use the field input length to detect attacks. This is intrinsic to the buffer overflow, and thus it is
very hard for worm authors to evade.

In addition to being network based and having high accuracy, LESG has the following important features.
• Noise tolerance. Signature generation systems typically need a flow classifier to separate potential

worm traffic from normal traffic. However, network-level flow classification techniques [7, 25–28]
invariably suffer from false positives that lead to noise in the worm traffic pool. Noise is also an issue
for honeynet sensors [5, 16, 23]. For example, attackers may send some legitimate traffic to a honeynet
sensor to pollute the worm traffic pool and to evade noise-intolerant signature generation. Our LESG
is proved to be noise tolerant or even stronger, attack resilient, i.e. LESG works well with maliciously
injected noise in an attempt to mislead NIDS [19].

• Efficient Signature Matching. Since the signatures generated are to be matched against every flow
encountered by the NIDS/firewall, it is critical to have fast signature matching algorithms. Moreover,
for the network-level signature matching, the signatures must be based solely on the network flows
rather than host-level information such as system calls. In LESG system, with a protocol length parser,
the length-based signature can be matched at network level without any host-level analysis. That is, we
can directly check the packets against signatures at routers/gateways.

In the rest of the paper, we first survey related work in Section 2 and discuss the LESG architecture in
Section 3. Then we present the length-based signature generation problem in Section 4, generation algorithm
in Section 5, and its attack resilience in Section 6. After that, in Section 7, we use real Internet traffic and seven
real exploit code (enhanced with polymorphic capabilities) on five different protocols to test the performance
of LESG prototype. Results show that LESG is highly accurate, noise tolerant, capable of detecting multiple
worms in the same protocol pool, and capable of online signature generation with small memory consumption.
Finally, we discuss some practical issues in Section 8 and conclude in Section 9.

2 Related Work
Early automated worm signature generation efforts include Honeycomb [5], Autograph [7], and EarlyBird [6].
But they do not work well with polymorphic worms.

2



Property of signatures generated Signature generation mechanisms
Network-based Host-based

Exploit-based Polygraph [15], Hamsa [14], PADS [16],
Nemean [23], CFG [24]

DACODA [18], Taint check [17]

Vulnerability-based LESG Vulnerability signature [10], Vigi-
lante [29], COVERS [8], Packet Vac-
cine [9]

Table 1: Comparison with other polymorphic worm signature generation schemes.

As mentioned before, existing work on automated polymorphic worm signature generation can be broadly
classified into vulnerability-based and exploit-based. Based on signature generation input requirements, we
can further categorize these schemes on another axis: host-based vs. network-based. The former requires
either exploit code execution or the source/binary code of the vulnerable program for analysis. On the
other hand, the network based approach relies solely on network-level packets. The classification of existing
schemes and LESG is shown in Table 1. We discuss them in more details below.

Exploit-based schemes. We have discussed most of them in the introduction [14–18, 23, 24]. For ex-
ample, Christopher et al.proposes using structural similarity of Control Flow Graph (CFG) to generate a
fingerprint to detect different polymorphic worms [24]. However, their approach can be evaded when the
worm body is encrypted. Furthermore, compared with length-based signatures, it is much more computation-
ally expensive to match the fingerprint with the network packets. Thus it cannot be applied to filter worm
traffic on high-speed links.

Compared with some most recent work in this category, such as Hamsa [14], LESG has better attack
resilience. For example, it has better bounds for the deliberate noise injection attacks [19].

Vulnerability-based and host-based schemes. Brumley et al.presents the concept of vulnerability sig-
nature in [10] and argues that the best vulnerability signatures are Turing machine signatures. However, since
the signature matching for Turing machine signatures is undecidable in general, they reduce the signatures to
symbolic constraint signatures or regular expression signatures. Their approach is a heavy-weight host-based
approach, which has high computation overhead and also needs some information such as the vulnerable
program, multiple execution traces, and the vulnerability condition. Similarly , Vigilante [29] proposed a
vulnerability based signature which is similar to the MEP symbolic constraint signatures in [10].

Liang et al.proposed the first host-based scheme to generate length-based signatures [8]. Packet Vac-
cine [9] further improve the signature quality by using binary search. Unfortunately, both of them are host-
based approaches and are subject to the limitations mentioned before and some additional shortcomings. First,
they need to know the vulnerable program. Sometimes, they have to try many different implementation ver-
sions to find the vulnerable ones. Second, the signature generated by [8] based on a small number of samples
may be too specific to represent the overall worm population. Therefore, detection based on their generated
signatures tends to have high false negatives. Moreover, the protocol specification language used in their
approach is not expressive enough for many protocols.

Other related work. There are previous research efforts on network-level detection of buffer overflow
exploits. However, they do not generate any effective signatures for checking future traffic for worms due to
high matching overhead and high false positives. Buttercup [30] and TCTP [31] detect buffer overflow attacks
by recognizing jump targets within the sessions. Approaches like SigFree [32] and [33] detect exploit codes
based on control flow and data flow analysis.

3 Architecture of LESG
As shown in Figure 1, LESG can be connected to multiple networking devices, such as routers, switches
and gateways. Most modern switches are equipped with a span port to which copies of the traffic from a list
of ports can be directed. LESG can use such a span port for monitoring all the traffic flows. Alternatively,
we can use a splitter such as a Critical Tap [34] to connect LESG to routers. Such splitters are fully pas-
sive and used in various NIDS systems to avoid affecting the traffic flows. In addition, LESG can also be
used to monitor traffic towards large-scale honeynet/honeyfarm through sniffing the traffic on its gateways.
Nowadays, there are some large honeynets even with /A network size [35–37].

3



Router

Honey
net

Internet

LAN

Splitter

LESG
system

LESG
system

Switch

Gateway

Figure 1: Deployment of LESG.

Similar to the basic framework of Polygraph [15] and Hamsa [14], we
first need to sniff the traffic from networks, and classify the traffic to dif-
ferent application level protocols based on port numbers or other protocol
identifiers. Then we can filter out known worms and then further separate
the traffic to form a suspicious traffic pool and a normal traffic reservoir
using an existing flow classifier [7, 25–28]. The flow classifier is also sim-
ilar to the one in Polygraph [15] and Hamsa [14] system, and can integrate
various techniques (such as honeypot/heneynet, port scan detection, and
other advanced techniques) to identify suspicious flows. Note that the flow
classifiers can also operate with line speed of routers as achieved in our
earlier work with scan detection [38]. It is called suspicious pool rather
than malicious pool because the behavior based classification can never be perfectly accurate.

Leveraging the normal traffic selection policy mentioned in [14], we can create the normal pool. The
suspicious pool and the normal pool are inputted to the signature generator as shown in Figure 2. We first
specify the protocol semantics and use a protocol parser to parse each protocol session into a set of fields.
Each field is associated with a length and a type. The field length information of both the suspicious pool and
the normal pool are given as input to the “LESG core”(signature generation algorithm) module to generate
the signatures.

3.1 Protocol Parsing

Filter

S u s p ic io u s
T ra f f ic  P o o l

N o rm a l
T ra f f ic  P o o l

Y E SQ u it

S ig n a tu resL E S G
C o re

P ro to c o l
S p ec if ic a tio n

P a rs ed
N o rm a l

P a rs ed
S u s p ic io u s

P ro to c o l
P a rs er

N O

Pool size
t oo sm a ll?

Figure 2: LESG signature generator

As emphasized in [39], protocol parsing is an important
step to any semantic analysis of network traffic, such as
network monitoring [40], network intrusion detection sys-
tem [3, 4], smart firewalls, etc.. We analyzed three text-
based protocols (HTTP, FTP, and SMTP) and 7 binary
protocols (DNS, SNMP, SMB, WINRPC, SUNRPC, NTP,
SSL). We find, in general, it is much easier to parse the
lengths of the protocol fields than full protocol parsing.

Some recent researches, such as BINPAC [39], have
studied how to ease the job of writing a protocol parser.
BINPAC is a yacc like tool for writing application proto-
col parsers. It has a declarative language and compiler,
and actually works as a parser generator. Its input is a
script which is actually a protocol specification written in
BINPAC language. The output is a parser code for that protocol. Currently BINPAC is executed in connec-
tion with Bro [4] which implements other necessary traffic analysis at lower levels. With BINPAC, writing a
protocol parser has been greatly simplified. Furthermore, not only the available scripts provided by Bro can
be reused, but also many people can potentially contribute to produce more reusable protocol specifications
for BINPAC as an open source tool. Because of these advantages, we use BINPAC and Bro for packet flow
reassembling and protocol parsing in our research.

4 Length-Based Signature Definition and Problem Statement
In this section, we formally model each application message as a field hierarchy, and present it as a vector of
fields. Based on this model, we formally define the length-based signatures and the length-based signature
generation problem.

4.1 Field Hierarchies
Each of the application sessions (flows) usually contains one or more Protocol Data Units (PDUs), which are
the atomic processing data units that the application sends from one endpoint to the other endpoint. PDUs
are normally specified in the protocol standards/specifications, such as RFCs. A PDU is a sequence of bytes,
and can be dissected into multiple fields. Here, a field means a sub-sequence of bytes specified in the protocol

4



Header

Additional

Authority

Answer

Question

QNAME

QCLASS
QTYPE

NAME
TYPE

CLASS

RDLENGTH
TTL

RDATA

questions

RRs

Figure 3: Illustration of DNS PDU

… … ……AB AB CDE CDE FGH FGH IJK IJK

Figure 4: Abstraction of DNS PDU

… … ……AB AB CDE CDE FGH FGH IJK IJK

L L M M N N

P Q RO

… …
…

…
…

…
…

Figure 5: Hierarchical Structure of DNS PDU

standard, having certain meaning or functionality for the protocol. Typically, a field encodes a variable with
a certain data structure, such as a string, an array etc.. Take the DNS protocol as an example, figure 3
shows the format of the DNS PDUs [41]. It has a header and four other sections – QUESTION, ANSWER,
AUTHORITY and ADDITIONAL. Each section is further composed of a set of fields. The QUESTION
section contains one or more DNS queries that are further composed of field class QNAME, QTYPE and
QCLASS. Another three sections contain one or more Resource Records (RRs), and each RR is composed of
six lower level fields (NAME, TYPE, etc.). Borrowing similar terms from the object model, we call the type
of fields, such as QNAME and QTYPE, as the field class, and each concrete instance of certain field as an
instance of the field.

Among all the field classes in PDUs, some, e.g., QNAME, NAME and RDATA, are variable-length fields,
whose instances possibly have different lengths; others are fixed-length fields, whose instances all have the
same length which is defined in the protocol standard. In our analysis, the continuous fixed-length fields can
be combined as one field for simplicity. Again, using the DNS protocol as an example, we denote the variable-
length field QNAME as A, and the concatenation of field QTYPE and QCLASS as B because both of them
are fixed-length fields. Then we denote the variable-length field NAME in section ANSWER as C , and the
concatenation of the next four fields as D because they are all fixed-length fields. With these abstractions,
the DNS PDU is illustrated as Figure 4, where there are totally 11 classes of fields. The 7 fields with gray
background are variable-length fields.

We make the following two observations on such a representation of PDU. First, the number of instances
of one field class in a PDU may vary. For example, one PDU may contain one instance of field A, and another
PDU may contain two. Secondly, in certain server implementations, it is possible that the concatenation of
multiple field instances (of the same field class or not) are stored in one buffer. That is, if the server has an
overflow vulnerability related to this buffer, it is the concatenation of several field instances that can overflow
the buffer. For example, imagine a DNS server receives a DNS PDU and stores the entire PDU in a vulnerable
buffer, what overflows the buffer is the concatenation of all the field instances. These two observations have
been further validated on other protocols such as SNMP and WINRPC.

With these considerations, we design a hierarchical model to describe the possible field classes in a PDU.
As Figure 5 shows, we denote the QUESTION section as a new field O, a concatenation of all the instances of
field A and B, O = (AB)∗. We also denote the concatenation of field C , D and E as a new field L = CDE,
the concatenation of all fields L (namely section ANSWER) as another new field P = L∗, and so on. In short,
we include all possible variable-length fields that potentially correspond to vulnerable buffers. We build such
a hierarchy for every flow.

In the rest of the paper, for brevity, we refer to variable-length fields simply as fields. Suppose there
are totally K classes of fields in the hierarchy constructed for a certain protocol. We use an index set E =
{1, 2, . . . ,K} to denote these K fields. Let xk, k = 1, 2, . . . ,K , be the maximum among the lengths of
potentially multiple instances of field k, then a vector X = (x1, x2, . . . , xK) is generated to represent the
field lengths for each field in a session (flow).

5



M : suspicious traffic pool N : normal traffic pool
|M| : number of suspicious flows inM |N| : number of noise flows in N
M1 : set of true worm flows inM M2 : set of noise flows inM
α : coverage of true worms K : number of variable length fields
MS : set of suspicious flows covered by signature set

S
NS : set of normal flows covered by signature set S

COVS : |MS |
|M| for a signature set S FPS : |NS |

|N| for a signature set S
COV0 : minimum coverage requirement for a signature

candidate
FP0 : maximum false positive ratio for a signature

candidate
γ′ : minimum coverage increase requirement for a

signature to be outputted in the first loop of the
Step 3 algorithm

γ : minimum coverage increase requirement for a
signature to be outputted in the second loop of
the Step 3 algorithm

Table 2: Table of Notations
4.2 Length-based Signature Definition
Based on the length vector representation of a session, we formally define the concept of length based signa-
ture. A signature is a pair Sj = (fj, lj), where fj ∈ E, fj is the signature field ID, and lj is the corresponding
signature length for field fj . When using the signature to detect the worms, the matching process is as follows.
For a flow X = (x1, x2, . . . , xK), we compare xfj

and lj . If xfj
> lj , then the flow X is labelled as a worm

flow; otherwise it is labelled as a normal one.
More than one signature correspond to different fields can possibly be generated for a given protocol,

resulting in a signature set S = {S1, S2, . . . , SJ}. A flow, which may contain one or more PDUs, will be
labelled as worm if it is matched by at least one signature in the set.

The length based signatures are designed for buffer overflow worms. The signature field should be exactly
mapped to a vulnerable buffer. In this case, the field of this instance must be longer than the buffer to overflow
it, while normal instances must be shorter than the buffer. Note that different servers may implement different
buffer lengths if the maximal length is not specified in the RFC. Here we focus on popular implementations
because the spread speed and scope of worms will be significantly limited if they only target unpopular
implementations. We define the minimum buffer length of popular implementations as the ground truth
signature, denoted as B = (fB, LB) where LB is the vulnerable buffer length. Even with multiple different
implementations, for the field related to the vulnerable buffer, the distributions of normal flows and worm
flows should be well apart. That is, the lengths of normal flows should be less than LB because for a popular
server implementation (e.g., FTP), there are often various client softwares communicating with it without
knowing its buffer length. So LB should be large enough for most of the normal flows. On the other hand,
obviously those of worm flows should be larger than LB .

As elaborated below, our algorithm will not output any signatures for non-buffer-overflow worms because
our algorithm ensures that all generated signatures have low false positives.

4.3 Length-Based Signature Generation Problem Formulation
A worm flow classifier labels a flow as either worm or normal. The flows labelled as worms constitute the
suspicious traffic pool while those labelled normal constitute the normal traffic pool. If the flow classifier is
perfect, all the flows in the suspicious pool are worm samples. If the worm is a buffer overflow worm, finding
a length-based signature amounts to simply finding the best field and the field length with the minimal false
negatives and the minimal false positives. However, in practice flow classifiers at the network level are not
perfect and always have some false positives and therefore the suspicious pool may have some normal flows.
Finding signatures from a noisy suspicious pool makes the problem NP-Hard (Theorem 1). On the other hand,
due to the large volume traffic on the Internet, we assume the noise (worm flows) in the normal pool is either
zero or very limited, and thus it is negligible.

After filtering existing known worms, there can be multiple worms of a given protocol in the suspicious
pool, though the most common case is a single worm having its outbreak undergoing in the newly generated
suspicious pool. The output of the signature generation is a signature set S = {S1, S2, . . . , SJ}. A flow
matched by any signature in this set will be labelled as a worm flow.

In Table 2, we define most of the notations used in the problem formulation, theorems, and their proofs.

6



Problem 1 (Noisy Length-Based Signature Generation (NLBSG)).
INPUT: Suspicious traffic pool M = {M1,M2, . . .} and normal traffic pool N = {N1, N2, . . .}; value
γ < 1.
OUTPUT: A set of length-based signature S = {(f1, l1), . . . , (fJ , lJ)} such that FPS is minimized subject to
COVS ≥ 1 − γ.

Hardness For a buffer overflow worm in the suspicious pool, in the absence of noise, generation of the set
of length-based signatures is a polynomial time problem, since we know the size of the set is one. However,
with noise and multiple worms, the computational complexity of the problem has significantly changed.

Theorem 1. NLBSG is NP-Hard

Proof Sketch. The proof is by reduction from Minimum k Union, which is equivalent to Maximum k-
Intersection [42].

5 Signature Generation Algorithm
Although, the problem NLBSG is NP-Hard in general, for buffer overflow worms, the algorithms we proposed
are fast and can have fair accuracy even in the worst case scenarios. We formally proved the theoretical false
positive and false negative bounds with or without adversaries to inject intentionally crafted noise. To the best
of our knowledge, we are the first network based signature generation approach that has the accuracy bound
even with adversaries’ injected noise.

The protocol parsing step generates (field id. length) pairs for all flows in normal traffic pool and sus-
picious traffic pool respectively. Based on that, we design a three-step algorithm to generate length-based
signatures.

Step 1: Field Filtering Select possible signature field candidates.
Step 2: Signature Length Optimization Optimize the signature lengths for each field.
Step 3: Signature Pruning find the optimal subset of candidate signatures with low false positives and false

negatives.

5.1 Field Filtering
In this step of the algorithm, we make the first selection on the fields that are possible to be signature can-
didates. The goal is to limit the searching space. Two parameters are set as the input: FP0 and COV0,
which indicates the most basic requirement on the false positives and detection coverage. For example, in our
experiments, we choose FP0 = 0.1% and COV0 = 1%.

In the algorithm below, Nlj and Mlj denote the flows detected by signature (fj, lj) in pool N and M
respectively.

Algorithm Step 1 Field filtering (M,N )
S ← ∅;
for field fj = 1 to K

find lj such that
|Nlj

|

|N| ≤ FP0 <
|Nlj−1|

|N| ;

if
|Mlj

|

|M| ≥ COV0

S ← S ∪ {(fj , lj)};
end

end
Output S ;

Given a parsed normal pool and suspicious pool with sets
of (field id. length) pairs, we first sort lengths for every field
for both normal pool and suspicious pool respectively. In this
first step of algorithm, initially the candidate signature set is
empty. Then in the loop, from normal pool, for each field fj ,
we find a length so that the normal flows falsely detected by
the length signature is less than or equal to FP0 and the normal
flows detected by a shorter length signature will be greater than
FP0. Then in the second part within the loop, we check if that
length has detection coverage greater than the minimal cover-
age COV0. Therefore, in this first step, the algorithm added all possible candidates that meet the most basic
requirements of FP0 and COV0. We set low FP0 as basic low-false-positive requirement. A conservatively
small value is chosen for COV0 initially because attackers may inject a lot of noise into suspicious pool. We

7



will further optimize the values in the subsequent steps.
We process each field class separately. According to FP0, an signature length can be determined, by an

sorting and searching, in O(|N | log |N |) time. If the corresponding detection coverage on M is larger than
COV0, this field is taken as a signature candidate, and is passed to the next step of algorithm, which can be
determined by O(|M|). The running time is O(K|N | log |N | + K|M|). Since usually |M| is far smaller
than |N |, the overall time cost is O(K|N | log |N |).

This step actually makes use of the fact that, for buffer overflow worms, the true worm samples should
have longer lengths on the vulnerable fields than the normal flows, and the noise in suspicious pool that is not
injected by attackers should have similar length distribution to traffic in N . If the coverage α of true worm
samples in the suspicious pool M is more than COV0, the vulnerable field length with small false positive
ratio FP0, should have coverage larger than COV0 in the suspicious pool. The COV0 and FP0 are the very
conservative estimate of the coverage and the false positive of the worm.

5.2 Signature Length Optimization

Algorithm Step 2 Signature Length Optimization
(S,M,N ,Score(·, ·))
for signature (fj , lj) ∈ S

sortMfj in ascending order;
find m0 such that x

fj

m0−1 < lj < x
fj
m0

;
max score← 0;
for m′ = m0 to |M|

l′j ← x
fj

m′ − 1;
if (max score < Score(COVl′

j
, FPl′

j
))

max score← Score(COVl′
j
, FPl′

j
);

lj ← l′j ;
m← m′;

end
end

while (lj >
x

fj
m−1

+x
fj
m

2
)

if (Score(COVlj , FPlj ) ==
Score(COVlj−1, FPlj−1))

lj ← lj − 1;
else

update S with lj ; break;
end

end
end
Output S ;

Algorithm Step 3 Signature Pruning (S,M,N )
m← |M| ; Ω← ∅ ;
S1 ← {e|e ∈ S; FPe = 0} ; S2 ← {e|e ∈ S; FPe > 0} ;
LOOP1:
while (S1 6= ∅)

Find s ∈ S1 such that |Ms|
m

is the maximum one in S1 ;
If ( |Ms|

m
≥ γ′)

Ω← Ω ∪ {s} ;S1 ← S1 − {s} ;
Remove all the samples which match s inM ;

else
Break ;

end
end
LOOP2:
while (S2 6= ∅)

Find s ∈ S2 such that |Ms|
m

is the maximum one in S2 ;
If ( |Ms|

m
≥ γ)

Ω← Ω ∪ {s} ; S2 ← S2 − {s} ;
Remove all the samples which match s inM ;

else
Break ;

end
end
Output Ω ;

The first step selected candidate signatures to meet the most basic requirements. In the second step, we
try to optimize the length value of each candidate signature to improve coverage and to reduce false positives.
If the length signature is selected to be too big, there will be less coverage of malicious worm flows. On the
other hand, if the length is selected to be too small, there will be a lot of false positives. The first step is a
very conservative estimate of coverage. In the second step, we try to find longer length than the first step to
improve on coverage without sacrificing false positives. Sometimes a length does improve a lot on coverage
of suspicious pool but also increase false positives. We need to have a method to compare different lengths
to determine which one is a ”better” signature. For brevity, let FPlj denote the false positive of signature
(fj, lj), and COVlj denotes its coverage on M. This step aims to maximize Score(COV lj ,FPlj ) for each
field fj . We used the notion score function, which is proposed in [14], to determine the best tradeoff between
the false positive and coverage. For example, we need to make a choice between COV = 70%, FP = 0.9%
and COV = 68%, FP = 0.2%.

In the Step 2 algorithm, M = {X1, X2, . . . , X|M|}, where Xm = (x1
m, x2

m, . . . , xK
m), m =

1, 2, . . . , |M| that is the length of each field in a flow m. We define Mk = {xk
1 , x

k
2 , . . . , x

k
|M|}. Signature set

8



S generated in Step 1 is the input of this step.
With the sorted lengths as input, for candidate signature fields, each length above the candiate length se-

lected at step 1 will be tested for its goodness according to the score function, and the best one with the maxi-
mum score will be selected. The first loop picks a longer length value with the best score. Then in the second
loop, we further optimize it by finding a smaller length with the same score. In Mfj = {x

fj

1 , x
fj

2 , . . . , x
fj

|M|},
if x

fj
m is in the ascending order, it is easy to know that between any two consecutive elements, namely

x
fj

m−1 and x
fj
m , the score is monotonically non-decreasing in lj . Thus we only need to search among all

the x
fj
m − 1, m = m0, . . . , |M| for the best score, i.e.the total number we need to try is at most |M|.

The rational for the second loop is as follow. Letting the signature length too close to the edge of lengths
of worm flows is not a good choice, especially when the length distributions of normal field instances and of
malicious field instances are well separated. So in the other part of the algorithm Step 2, lj decreases until
the score changes (decreases actually) or lj reaches the median of two consecutive elements in Mfj . In the
Section 6.2, we will analyze the advantages of this choice.

To sort each Mfj needs O(|M| log |M|). To search the best score from m0 to |M| need at most
O(|M| log |N |). In the worst case, to find the best signature in the gap between x

fj

m−1 and x
fj
m needs to

search half of the gap. Since |S| ≤ K , the total running time is O(K(|M| log |M| + |M| log |N | + G)). G
is the possible maximum gap among all the fields.

5.3 Signature Pruning
Still we have a set of candidate field and length signatures. Too many length signatures will cause unnecessary
false positives, because we try to match any of the length signatures in the detection phase. Therefore, in this
final step, we will find an optimal small subset of signature candidates to be the final signature set. Usually,
the more signatures we use, the more false positives there are, but with better coverage.

As proved in Section 4.3, to select the optimal small set of signatures in general is NP-Hard. The algorithm
proposed here is not to search for global optimum, but find a good solution with bounded false positives and
negatives. In the Step 3 algorithm, γ ′ and γ are parameters and γ ′ < γ. The Step 3 algorithm has two stages.
The first one is the opportunistic stage. We opportunistically find the signatures which can improve at least
γ′ percent of the initial suspicious pool coverage than the existing signature set without generating any false
positive. Usually, γ ′ is small. If the best approximated signatures for each worm have 0 false positive, the
opportunistic stage can help improve the true positives even when adversaries are present. Then, we use a
similar process to find other signatures with marginal improvement requirement γ.

Calculating |Ms| takes O(log |M|), and thus finding the signature with maximum coverage takes
O(K log |M|). Furthermore, removing samples matched by signature s takes O(|M|). Therefore, final
running time for Step 3 algorithm can be bounded by O(K(K log |M| + |M|)).

With our three-step algorithm, we guarantee low false positives and false negatives on the generated
signatures for buffer-overflow worms. For non-buffer-overflow worms, the algorithm will output an empty set
finding no signatures to meet the minimal requirements on false positives and false negatives.

6 Attack Resilience Analysis
We presented the length signature generating algorithm and its performance analysis in the previous section.
In this section, we analyze and prove attack resilience of our algorithm, i.e., the quality of signatures generated
(evaluated by false negatives and false positives) when attackers launch attacks to try to confuse and evade
the LESG system. In particular, attackers may deliberately inject some noises into the suspicious pool to fool
LESG.

6.1 Worst Case Performance Bounds
Note that the noisy length signature generation problem (NLBSG) is a NP-Hard problem and even the global
optimum solution due to the limited input size can be different from the ground truth signature LB as defined
in Section 4.2. The signatures we generated are approximated signatures. In the Step 1 and Step 2 algorithms,

9



Attackers can fully craft the worms and The signature B′ has zero false negative and
zero false positive non-zero false positive

can craft noises Theorem 2 Theorem 3
cannot craft noises Theorem 4 Theorem 5

Table 3: Worst cases with different assumptions

we always select the field fB in the signature candidate set if the worm coverage is larger than COV0. But
in our algorithm, we might not get the optimal length LB , instead we get L′

B . We denote the signature
B′ = (fB , L′

B). We tend to choose a more conservative signature than the ground truth signature B. Therefore
FN{B′} = 0 and FP{B′} ≤ FP0.

For most cases, the distributions of normal flows and worm flows are well apart and there is a noticeable
gap between the two distributions, then we will get FP{B′} = 0 which has the same power as the ground
truth signature. Without adversaries, our algorithm will output the signature B ′, we call it the best approxi-
mated signature because it has the tightest bound to the corresponding ground truth signature when compared
with signatures generated with adversaries. Then with different adversary models and depending on whether
the normal and worm flow length distributions have a noticeable gap, our algorithm will output different ap-
proximated signatures with different attack resilience bounds. In this section, we prove these bounds when
compared with the ground truth signatures.

Let M1 be the set of true worm flows in M and let M2 = M − M1, which is all the noise in the
M. Let the fraction of worm flows in M be α, i.e. |M

1|
|M| = α. For simplicity, in the Step 3 algorithm, we

denote the loop of finding zero false positive signatures as LOOP1 and the loop of finding non-zero false
positive signatures as LOOP2. Except Theorem 2, the proofs of all the following theorems can be found in
Appendix A.

6.1.1 Performance Bounds with Crafted Noises
In Theorems 2 and 3, we prove the worse case performance bounds of our system under the deliberate noise
injection attacks, i.e., with crafted noises. This is the worst case. The attackers not only fully craft the worms
but also inject the crafted noises. The difference between Theorem 2 and Theorem 3 is that Theorem 2
assumes the length distributions of normal flows and worm flows are well apart which is the most common
case in reality. Theorem 3 consider even more general cases, which the length distributions of normal flows
and worm flows can have overlap.

Theorem 2. If the best approximated signature has no false negative and no false positive, the three step
algorithm outputs a signature set Ω such that FNΩ < γ′

α
and FPΩ ≤ FP0 · b

1−α
γ

c.

Proof. Let the best approximated signature be s.
|M1

{s}
|

|M1| = 1 and FP{s} = 0. Let the signature set we find in
LOOP1 be Ω1. Let the signature set found in LOOP2 be Ω2 = Ω − Ω1.

After LOOP1, the residue of true worm samples |R| < γ ′ · |M|. If |R| ≥ γ ′ · |M|, s will taken as the
output. Then there is no true worm samples left. Therefore |R| < γ ′ · |M|.

Therefore, |M1
Ω| ≥ |M1

Ω1
| = |M1 − R| = |M1| − |R| > |M1| − γ′ · |M|. Since |M1|

|M| = α,

|M1
Ω| > |M1| − γ′ · |M| = |M1| − γ′ · |M1|

α
= (1 − γ′

α
) · |M1|. Hence, |M1

Ω
|

|M1|
> 1 − γ′

α
. Therefore,

FNΩ < γ′

α
.

Suppose the first output signature in LOOP1 is s′; then |M{s′}|

|M| ≥
|M{s}|

|M| = α. Therefore after LOOP1,
the remaining suspicious pool size |M′| ≤ (1 − α) · |M|.

Since FPΩ1
= 0, we have FPΩ = FPΩ2

. Since in LOOP2 each iteration needs to improve coverage by
γ, there at most is b |M′|

γ·|M|c ≤ b (1−α)·|M|
γ·|M| c = b1−α

γ
c iterations. Each iteration may introduce false positive

ratio FP ≤ FP0. Therefore the final false positive ratio is bounded by FP0 · b
1−α

γ
c

10



Theorem 3. If the best approximated signature has no false negative and the false positive ratio is bounded
by FP0, the three-step algorithm outputs a signature set Ω such that FNΩ < γ

α
and FPΩ = FP0 ·(b

1−α
γ

c+1).

These bounds are still tight as shown in the example of deliberated noise injection attacks in Section 6.1.3.
Furthermore, the experimental accuracy results obtained in Section 7.7 are even better than these bounds.

6.1.2 Performance Bounds without Crafted Noises
Since injected crafted noises will slow down the worm propagation, the worm authors might not want to do
that. For example, when the noise ratio is 90% (i.e., 90% of traffic from a worm is crafted noises), the worm
will propagate at least 10 times slower than before based on worms based on the RCS worm model [12]. For
example, the Code Red II may take 140 hours (six days) to comprise all vulnerable machines instead of 14
hours.

Without crafted noises, i.e., the noises are from normal traffic, we are able to prove even tighter perfor-
mance bounds for our system. Here, the Theorem 4 below assumes the length distributions of normal flows
and worm flows are well apart while the Theorem 5 removes this assumption. Both theorems assume the
noises in the suspicious pool is randomly sampled from the normal traffic.

Theorem 4. If the noise in the suspicious pool is normal traffic and not maliciously injected, and if the best
approximated signature has no false positives and no false negatives, then the three-step algorithm outputs a
signature set Ω such that FNΩ = 0 and FPΩ = 0; in other words, with no false negative and false positive.

In this case, the outputted signature set Ω contain the best approximated signature.

Theorem 5. If the noise in the suspicious pool is normal traffic and not maliciously injected, and if the best
approximated signature has no false negative and false positive ratio is bounded by FP0, then the three-step
algorithm outputs a signature set Ω such that FNΩ ≤ FP0·

1−α
α

and FPΩ ≤ FP0.

The evaluation results in Section 7.2 are consistent with the theorem and are often better than the bounds
proved in the theorems.

6.1.3 Discussions
In this section, we discuss some issues related to the attack resilience theorems.

Multiple worms. For single worm cases, the theorems can be directly applied. In the case that multiple
worms are in the suspicious pool, for each worm, we treat the other worms as noises, and thus we have the
same bound.

Parameter FP0. From the theorems above, we can tell that FP0 plays an important role on the bound. We
have the following observations for its value. Usually given a standard protocol, a popular implementation of
peer/server should be able to interoperate with various different implementations of peer/clients. Thus, even
for a server implementation with a buffer overflow vulnerability, in most cases the normal traffic should not
trigger the buffer overflow. Here we assume FP0 is no larger than 0.1% and we conservatively set it to be
0.1%, i.e., the server should be able to handle 1000 normal requests without crash (buffer overflow triggered).
This is equivalent to a server handle six requests per hour and does not crash for a week. We believe this is
reasonable for most popular implementations of a protocol.

Assumptions for theorems on attack resilience. There are two general assumptions for all the theorems
above. First, there is little or no overlap for the input length of vulnerable fields between the normal traffic
and the worms. This is discussed in Section 4.2 and also validated in our experiments. Secondly, the attacker
cannot change the field length distribution of normal traffic which is also generally true. Compared with the
recent Hamsa system [43], we have less assumptions and allow crafted noises.

11



6.2 Resilience Against the Evading Attacks
In this section, we discuss the resilience of our schemes against several recently proposed attacks [20–22].

Deliberate noise injection attack In [19], deliberate noise injection is proposed to mislead the worm
signature generator. Most other existing signature generators suffer under this attack. However, even with this
attack, our approach can perform reasonably well, especially in the case when the best approximated signature
with zero false positive exists. For example if γ ′ = 1% and γ = 5%, even with 90% crafted noise, in most
cases, the false negative rate can be bound as 10% and the false positive rate, 1.8%. Also, the experiments
results in Section 7.7 is much better than the bound: Under the deliberate noise injection attack with 90%
craft noises, the false negative rate is 6.3% and false positive rate is 0.14%. To the best of our knowledge, we
are the first network-based approach that can achieve this performance.

There are several different attacks proposed in Paragraph [20]. Among them, the suspicious pool poison-
ing attack is similar to the deliberate noise injection attack. Next, we discuss other attacks.

Randomized red herring attack or coincidental attack is to inject unnecessary tokens to the content based
approaches with a probability model, so that these tokens are highly likely to be included in the signatures
to produce more false negatives. A similar attack can be proposed to our approach. However, that requires
the attackers to use the “don’t care” fields, the fields which can be manipulated without influencing the worm
execution. Unlike the content-based signature generation approaches with which attackers can inject as many
tokens as they want, there may be zero or only a small number of such “don’t care” fields in a protocol, so the
attack may not be applicable. Moreover we use a signature set. When any signature in this set matches the
sample, we label the sample as a worm. This is more resilient than using the whole set as a signature.

Dropped red herring attack includes some tokens in the beginning of the worm spread and drops those
tokens in later propagation of the worm. Again, a similar attack can be proposed for our approach. However,
there are several problems as well as countermeasures for such attacks. First, this attack also requires “don’t
care” fields. Secondly, we can potentially still detect the worm with any disjunction in the signature set
instead of using the conjunction. Thirdly, this attack is hard to implement because it requires the worm to
dynamically change itself with synchronized actions. Fourthly, there are some dynamic update problems for
signature change and signature regeneration. Since our signature generation is fast, it can alleviate the damage
by this attack.

Moreover, there is another similar attack which can be designed specially for length-based signatures. We
call it length dropping attack. Since the attackers have to inject an input longer than the buffer length LB , they
can inject a long input L at the beginning and gradually decrease the length by ∆L in each run of infection
until LB . However, since if there is a gap between L and LB , in our design we choose the signature length be

lj =
x

fj
m−1

+x
fj
m

2 , and the x
fj

m−1 is comparable to LB and the x
fj
m is comparable to L. In other words, we will

choose the median of L and LB . Therefore, even when this attack is launched, we only need regenerate the
length signature O(log(L1 − LB)) times where L1 is the initial length that the attackers use.

Innocuous pool poisoning is to poison the normal traffic pool. However, in general, this is very hard. First,
the amount of normal traffic is huge, even to poison 1% is hard. Second, using the random selection policy
of normal traffic [14], it is very hard for attackers to poison the traffic in the right time to have an effective
evasion during the worm breakout.

In [21], Simon et al.propose two types of allergy attacks. The type I attack makes the IDS to generate
signatures which can deny current normal traffic. The type II attack makes the IDS generate signatures which
can deny future normal traffic. The type I allergy attack does not work for our approach because we check
the false positive to the normal traffic. The type II attack may work in theory, but in practice it is very hard to
happen. The contents of future traffic may change a lot than that of the current normal traffic, but the length
profile of fields in the protocol will still remain stable. Therefore it is hard to find such a case. Even if there is
such a case, it is very hard for the attack to predict.

The blending attacks [22] cannot work for our approach because the worm has to use a longer-than-normal
input for the vulnerable field and they cannot mimic the normal traffic.

12



Protocol DNS SNMP SNMPtrap FTP1 FTP2 FTP3 SMTP HTTP
Bugtraq ID 2302 1901 12283 16370 9675 20497 19885 2880

ground truth (fieldID,BufLen) (2,493) (6,256) (7,512) (1, 228) (11,419) (33, 4104) (3, unknown) (6, 240)
signature related field length fixed variable variable variable variable variable variable variable

Table 4: The summary of worms7 Evaluation
We implemented the protocol parsing using Perl scripts with BINPAC and Bro, as mentioned in Section 3.1,
and implemented the LESG signature generator in MATLAB.

7.1 Methodology
We constructed the traffic of eight worms based on real-world exploits, and collected more than 14GB Internet
traffic plus 123GB Email SPAM. To test LESG’s effectiveness, we used completely different dataset for LESG
signature generation (i.e. training dataset) and for signature quality testing (i.e. evaluation dataset). For
training dataset, we used a portion of the worm traffic plus some samples from the normal traffic (as noise)
to construct the suspicous pool, and a portion of the normal traffic as the normal pool. For evaluation dataset,
we used the remaining normal traffic to test the false positives and worm traffic to test false negatives. For
attack resilience testing, we tested the performance of our system under deliberate noise injection attack with
different noise ratios.

7.1.1 Polymorphic Worm Workload
To evaluate our LESG system, We created eight polymorphic worms based on real-world vulnerabilities and
exploits from securityfocus.com, as shown in Table 4, by modifying the real exploits to make them
polymorphic. The eight worms are with six different protocols, DNS, SNMPv1, SNMPv1trap, FTP, SMTP
and HTTP. Since the original exploit codes are not polymorphic and the field lengths are fixed, we modified
them as follows: for the exploit unrelated fields, i.e.“don’t care” fields, we randomly chose the lengths with
the same distribution as those in normal traffic; for the signature related fields, the lengths in the original
exploit codes are longer than the buffer lengths in most cases, so we used these values as upper bound in the
worms, and the hidden buffer length or a larger value that we believe is necessary to exploit the vulnerability
as the lower bound (specified by the row “ground truth” in Table 4); moreover, for some exploits that have
rigid exploit condition, we kept the fixed length. In the Table 4, the row titled “signature related field length”
specifies whether the overflowing field length is fixed or not. For the vulnerability that we cannot find the
ground truth by searching literatures, we indicate so as “unknown”.

The detailed descriptions of the worms we created are as follows.
DNS worm. It’s a variance of the lion worm that attacks a vulnerability of BIND 8, the most popular

DNS server. The exploit code constructs a UDP DNS message with QUESTION section whose length is 493
bytes and hard to be variable.

SNMP worm. It attacks a vulnerability in the NAI sniffer agent. The vulnerable buffer is 256 bytes long
and stores the data transferred in field ObjectSyntax.

SNMP Trap worm. The worm targets Mnet Soft Factory NodeManager Professional. When it processes
SNMP Trap messages, it allocates a buffer of 512 bytes to store the data transferred in field ObjectSyntax.

FTP worm I. It exploits a vulnerability in the Sami FTP Server. The content of the USER command must
be longer than 228 bytes to overflow the buffer storing it.

FTP worm II. It targets a popular desktop FTP server, Serv-U. The content of the SITE CHMOD com-
mand plus a path name is stored in a buffer which is 419 bytes long.

FTP worm III. It targets BulletProof FTP Client. The content of FTP reply code 220 must be longer than
4104 bytes.

SMTP worm. This vulnerability resides in the RCPT TO command of the Ipswitch IMail Server.
HTTP worm. It exploits the IIS vulnerability also attacked by a famous worm Codered. The difference

is we varied the length of our created worm, while Codered has fixed length.

13



7.1.2 Normal Traffic Data

Number of Normal pool Evaluation dataset
Fields Bytes Flows Hours Bytes Flows Hours

DNS: 14 120M 320K 21 960M 4.4M 120
SNMP: 10 12M 13K 20 282M 77K 120
SNMPt: 11 21M 16K 72 67M 54K 218

FTP: 60 2.7G 66K 14 10G 373K 37
SMTP: 13 840M 210K 24 122G 31M 744
HTTP: 7 2G 77K 7 11G 360K 40

Table 5: Dataset summary for evaluation

The traffic traces were collected at the two gigabit links of the gateway routers at Tsinghua University
campus network in China, in June 21 - 30, 2006. All traffic of Tsinghua University to/from DNS, SNMPv1
Trap, SNMPv1, HTTP and FTP control channel are collected, without using any form of sampling. We used
another 123GB SPAM dataset from some open relay servers in a research organization at US for the SMTP.
The datasets are summarized in Table 5. Since SNMPv1 Trap message is sent to port 162 and its format is
different from other types of messages, we treat SNMPv1 Trap as a protocol separate from SNMPv1 on port
161. Also note that for evaluation purpose, in our prototype system we only parsed the GET request for HTTP,
which has the same effect as a complete parsing, because the worm is only related to GET request. The traces
are checked by the Bro IDS system to make sure that the traces are normal traffic.

7.1.3 Experiment Settings
In the Step 1 algorithm, we set FP0 = 0.1% and COV0 = 1%. The score function in Step 2 is
Score(COV,FP) = (1/logFP + 1) ∗ COV, which works well in practice. The basic requirement of a
score function is that the score should be monotonically increasing with COV and decreasing with FP. This
function has another merit that a large FP (eg. FP ∈ [10−2, 10−1]) affects the score greater than a much
smaller FP (eg. FP ∈ [10−5, 10−4]) does. In Step 3, we choose γ ′ = 1% and γ = 5%, indicating that we
focus on the worms that cover more than 1% of the suspicious pool.

All experiments were conducted on a PC with a 3.0GHz Intel Xeon running Linux kernel 2.6.11.

7.2 Signature Generation for A Single Worm with Noise
We evaluated the accuracy of LESG with presence of noise. The noise is the flows randomly sampled from
normal traffic, and mixed with worm samples to compose the suspicious pool. We chose DNS, SNMP,
SNMPtrap, SMTP and HTTP protocols to demonstrate the cases of single worm with noise. For HTTP
we also tested our algorithm against Codered worm.

For each protocol, we tested the suspicious pool size of 50, 100, 200 and 500, and at each size we changed
the noise ratio from 0 to 80% increasing 10% in each test. After signature generation, we matched the
signatures against another 2000 samples of worms and evaluation set of normal traffic to test the sensitivity
and accuracy.

Table 6 shows the range of the signatures we generated and their accuracy. Tr. FN/FP denotes training
false negatives and false positives in the training data. Ev. FN/FP denotes the evaluation false negatives
and false positives in evaluation data set. Under all the pool sizes and noise ratios, the same signature fields
are generated. Because the size of suspicious pool is limited, the signature length varies in different tests.
We checked these signatures against the evaluation datasets, and they all have excellent false negative and
false positive ratio. It may be noticed that generated signature lengths are smaller than the true buffer length,
because the length in normal flows are usually much smaller than the buffer length, which is reasonable since
the buffer length is designed to be longer than the longest possible normal requests.

14



Worm Signatures Tr. FN Tr. FP Ev. FN Ev. FP
(ID,length)

DNS (2, 284∼296) 0 0 0 0
SNMP (6, 133∼238) 0 0 0 0
SNMPt (7, 304∼314) 0 0 0 0
SMTP (3, 109∼112) 0 0 0 10−5

(1, 128∼169)
FTP (11, 262∼300) 0 0 0 0

(33, 2109∼2121)
HTTP (6, 239∼240) 0 0 0∼1% 10−4

CodeRed (6, 339) 0 0 0 10−5

Table 6: Signatures and accuracy under different pool size and noise

7.3 Signature Generation for Multiple Worms with Noise
We also evaluated the case of multiple worms with noise using the FTP protocol. We have three FTP worms
in total. we tested the suspicious pool size of 50, 100, 200 and 500, and at each size we change the noise ratio
from 0 to 70% increasing 10% in each test.The result is also shown in Table 6.

7.4 Evaluation of Different Stages of the LESG Algorithm
The LESG algorithm has three steps, and we evaluated the effectiveness of each step. Table 7 illustrates the
results of each step for the DNS worm, with a suspicious pool of size 100 and noise ratio 50%. Table 7 shows
that the false positive rate is largely decreased by refining each signature length in Step 2. And comparing
with Table 4, we can see that in Step 3, the best and most accurate signature is selected, further decreasing the
false positives.

Signature Tr. FN Tr. FP
Step 1 {(1,62), (2,66), (3,2), (4,15), 0 0.32%

(5,28), (6,47), (10,99),(11,2)}
Step 2 {(1,68), (2,296), (3,21), (4, 99), 0 0.15%

(5,333), (6,543), (10,111), (11,2)}
Step 3 {(2, 296)} 0 0

Table 7: Result of each step for the DNS worm

7.5 Pool Size Requirement
We tested the accuracy of our algorithm when only a small suspicious pool is available. We chose suspicious
pools of size 10 with noise ratio 20%, and size 20 with noise ratio 50%. All the tests generated signatures
within the range presented in Table 6.

We further did similar tests for the DNS worm using different normal pool size 5K, 10K, 20K, and 50K.
And we found our approach is not sensitive to the size of normal pool either.

7.6 Speed and Memory Consumption Results
Normal pool Protocol Signature generation

(Bytes/Flows) parsing (in different pool size)
(Bytes/Flows) (secs) (secs)

50 100 200 500
DNS 120M/320K 58 2.1 3.6 9.4 18

SNMP 12M/13K 8 0.08 0.09 0.15 0.32
SNMPt 21M/16K 4 0.12 0.24 0.37 0.88

FTP 2.7G/66K 95 0.20 0.29 0.54 1.20
SMTP 836M/210K 50 0.47 1.30 1.84 3.36

Table 8: Speed of protocol parsing and signature generation

We evaluated the parsing speed by using Bro and BINPAC, and the speed of our signature generation

15



 0

 0.05

 0.1

 0.15

 0.2

 1 0.8 0.6 0.4 0.2

Fa
lse

 N
eg

at
ive

 R
at

e

Noise Ratio

Theoretical bound
Training FN

Evaluation FN

Figure 6: False negative rate with different noise ra-
tio

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 1 0.8 0.6 0.4 0.2

Fa
lse

 P
os

itiv
e 

Ra
te

Noise Ratio

Theoretical bound
Training FP

Evaluation FP

Figure 7: False positive rate with different noise ratio

algorithm. Since HTTP was not completely parsed, we only provide the result of the other five protocols.
Table 8 shows that the speed of signature generation algorithm are quite fast, though the speed is influenced
by the size of the suspicious pool and the normal pool. The protocol parsing for normal pool can be done
offline. We can run the process once a while (e.g. several hours). And these datasets were collected over a
20-hour+ period. For the suspicious pool, since it is much smaller than the normal pool, the protocol parsing
can be done very quickly. Moreover, as mentioned in [44], the BINPAC compiler can be built with parallel
hardware platforms, which makes it much faster.

Normal pool size Suspicious pool size
100 200 500

DNS 50K 5.64MB 5.66MB 5.71MB
(14 fields) 100K 11.26MB 11.28MB 11.33MB

FTP 50K 8.43MB 8.45MB 8.53MB
(60 fields) 100K 16.83MB 16.85MB 16.93MB

Table 9: Memory usage of the algorithm

The memory usage of the signature generation algorithm implemented in Matlab was evaluated under
different pool sizes, shown in Table 9. The memory usage is proportional to the normal pool size and the
number of fields.

7.7 Performance under Deliberate Noise Injection Attacks
In [19], two deliberate noise injection attacks are implemented targeting the token based signature generation
systems, such as Polygraph. Inspired by their work, we implemented a similar attack to the LESG system.
In the attack we implemented 1) the attackers know all the parameters used in our system and optimize the
attack against them; 2) the attackers can obtain certain normal traffic samples, so that they can estimate field
length distributions.

We demonstrated this attack by modifying the Lion worm of the DNS protocol. There are 14 fields of the
DNS protocol. Only one field fB has to be long enough to overflow the buffer, which cannot be controlled by
attackers. The attackers can use the other 13 fields to craft arbitrary noises.

In the experiment we simulated the situation that the attacker capture the normal traffic with 100K flows to
optimize the attack. To make sure the attacker’s normal traffic has similar length distributions as the training
normal pool we used. In our experiment we randomly permutated the 320K DNS normal flows shown in
Table 5, and divide into the 100K flow pool for attackers and the 220K flow normal pool for the LESG
system.

In this experiment, we assume all the noise are deliberately injected. We test the noise ratio from 8% to
92% increasing 7% in each test. We use suspicious pool size of 200. For the Lion worm, the best approximate
signature has no false positive. The proof of Theorem 2 shows that the false negatives should be less than γ ′

16



portion of the suspicious pool. Therefore, at most 200 × γ ′ − 1 = 200 × 0.01 − 1 = 1 false negatives can be
generated. Under a given noise ratio, among the 13 fields, we search all the possible combinations and choose
the optimal set of fields to increase the false positives. Then we choose one of the remaining fields to increase
the false negatives.

we use another 2000 worms to test evaluation false negatives and the 4.4M DNS flows shown in Table 5
to test the evaluation false positives. The results is shown in Figure 6 and Figure 7. In training false negatives
and the evaluation false negatives are very close, so the two line collide each other. From the results we
know, even with 90% deliberate injected noise, our system still only has 6.3% false negative and 0.14% false
positive. This indicates it is quite hard for attackers to increase the false positives. The reason behind this is
that the worst case bound happens when each field can introduce false positives in a mutual exclusive way,
which is not almost possible in practice.

8 Discussions of Practical Issues
Speed of Length Based Signature Matching The operation of length-based signature matching has two
steps: protocol parsing of packets and field length comparison with the signatures. The latter is trivial. The
major overhead is for protocol parsing. Currently, the Bro and BINPAC based parsing can achieve 50 ∼ 200
Mbps. As mentioned in [44], with parallel hardware platform support, BINPAC may achieve 1 ∼ 10 Gbps.
On the commercial products side, Radware’s security switch on ASIC based network processor can operate at
3 Gbps link with protocol parsing capability [45]. Therefore, with hardware support, the whole length based
signature matching can be done very fast, which is comparable to current speed of pattern-based (string)
signature matching techniques widely used in IDSs.

Relationship Between Fields and Vulnerable Buffers The main assumption of length based signatures
is that there is a direct mapping between variable length fields and vulnerable buffers. In addition to the
vulnerabilities shown in the evaluation section, we further checked 11 more buffer overflow vulnerabilities
from securityfocus.com. We found that the assumption hold for all cases except one. Next, we will
first examine the normal cases and then check the special one.

In Section 4.1 we show that the consecutive fields can be combined together to a compound field. For the
variable length fields which cannot be further decomposed, we call them simple fields. We found in 13 cases
(out of the total of 18 cases that we examined) the field mapped to the vulnerable buffer is a simple field while
in 3 cases it is a compound field. There is one case we found that two simple fields, which cannot be combined
to a compound field, are mapped to one vulnerable buffer. Therefore, either of the two fields can cause the
buffer overflow to happen. In all these cases, we can get the accurate length-based signatures. However, we
did find one case (again, 1 out of 18 cases) which does not have length-based signatures. It is a buffer overflow
vulnerability present in versions of wu-ftpd 2.5 and below. The vulnerable buffer corresponds to the path of
the directory. So if a very deep path is created by continuously making new directories recursively, the buffer
will eventually be overflowed. From the protocol messages of the FTP, only a set of MKD (mkdir) commands
can be seen and the length of each directory could be normal. Therefore no length-based signatures exist.

9 Conclusions
In this paper, we proposed a novel network-based approach using protocol semantic information to generate
length-based signatures for buffer overflow worms. This is the first attempt to generate vulnerability based
signatures at network level. Our approach has good attack resilience guarantees even under deliberate noise
injection attacks. We further show that our approach is fast and accurate with small memory consumption
through evaluation based on real-world vulnerabilities, exploit codes and real network traffic.

References
[1] Z. Liang and R. Sekar, “Automatic generation of buffer overflow attack signatures: An approach based on program behavior

models,” in Proc. of Computer Security Applications Conference (ACSAC), 2005.

17



[2] E. Mars and J. D. Jansky, “Email defense industry statistics,” http://www.mxlogic.com/PDFs/IndustryStats.
2.28.04.pdf.

[3] Marty Roesch, “Snort: The lightweight network intrusion detection system,” 2001, http://www.snort.org/.
[4] Vern Paxson, “Bro: A system for detecting network intruders in real-time,” Computer Networks, vol. 31, 1999.
[5] C. Kreibich and J. Crowcroft, “Honeycomb - creating intrusion detection signatures using honeypots,” in Proc. of the Workshop

on Hot Topics in Networks (HotNets), 2003.
[6] S. Singh, C. Estan, et al., “Automated worm fingerprinting,” in Proc. of USENIX OSDI, 2004.
[7] H. Kim and B. Karp, “Autograph: Toward automated, distributed worm signature detection,” in Proc. of USENIX Security

Symposium, 2004.
[8] Z. Liang and R. Sekar, “Fast and automated generation of attack signatures: A basis for building self-protecting servers,” in

Proc. of ACM CCS, 2005.
[9] X. Wang, Z. Li, J. Xu, M. Reiter, C. Kil, and J. Choi, “Packet vaccine: Black-box exploit detection and signature generation,”

in Proc. of ACM CCS, 2006.
[10] D. Brumley, J. Newsome, D. Song, H. Wang, and S. Jha, “Towards automatic generation of vulnerability-based signatures,” in

Proc. of IEEE Security and Privacy Symposium, 2006.
[11] David Moore, Vern Paxson, Stefan Savage, Colleen Shannon, Stuart Staniford, and Nicholas Weaver, “The spread of the

Sapphire/Slammer worm,” http://www.caida.org, 2003.
[12] Stuart Staniford, Vern Paxson, and Nicholas Weaver, “How to own the Internet in your spare time,” in Proceedings of the 11th

USENIX Security Symposium, 2002.
[13] S. Staniford, D. Moore, V. Paxson, and N. Weaver, “The top speed of flash worms,” in Proc. of ACM CCS WORM Workshop,

2004.
[14] Z. Li, M. Sanghi, Y. Chen, M. Kao, and B. Chavez, “Fast signature generation for zero-day polymorphic worms with provable

attack resilience,” in Proc. of IEEE Security and Privacy Symposium, 2006.
[15] J. Newsome, B. Karp, and D. Song, “Polygraph: Automatically generating signatures for polymorphic worms,” in Proc. of

IEEE Security and Privacy Symposium, 2005.
[16] Yong Tang and Shigang Chen, “Defending against internet worms: A signature-based approach,” in Proc. of IEEE Infocom,

2003.
[17] James Newsome and Dawn Song, “Dynamic taint analysis for automatic detection, analysis, and signature generation of exploits

on commodity software,” in Proc. of NDSS, 2005.
[18] J. R. Crandall, Z. Su, and S. F. Wu, “On deriving unknown vulnerabilities from zeroday polymorphic and metamorphic worm

exploits,” in Proc. of ACM CCS, 2005.
[19] R. Perdisci, D. Dagon, W. Lee, et al., “Misleading worm signature generators using deliberate noise injection,” in Proc. of

IEEE Security and Privacy Symposium, 2006.
[20] James Newsome, Brad Karp, and Dawn Song, “Paragraph: Thwarting signature learning by training maliciously,” in Proc. of

International Symposium On Recent Advances In Intrusion Detection (RAID), 2006.
[21] Simon P. Chuang and Aloysius K. Mok, “Allergy attack against automatic signature generation,” in Proc. of International

Symposium On Recent Advances In Intrusion Detection (RAID), 2006.
[22] Prahlad Fogla, Monirul Sharif, Roberto Perdisci, Oleg Kolesnikov, and Wenke Lee, “Polymorphic blending attacks,” in Proc.

of USENIX Security Symposium, 2006.
[23] V. Yegneswaran, J. Giffin, P. Barford, and S. Jha, “An architecture for generating semantic-aware signatures,” in Proc. of

USENIX Security Symposium, 2005.
[24] Christopher Kruegel, Engin Kirda, et al., “Polymorphic worm detection using structural information of executables,” in Proc.

of Recent Advances in Intrusion Detection (RAID), 2005.
[25] Packeteer, “Solutions for Malicious Applications,” http://www.packeteer.com/prod-sol/solutions/dos.

cfm.
[26] K. Wang and S. J. Stolfo, “Anomalous payload-based network intrusion detection,” in Proc. of Recent Advances in Intrusion

Detection (RAID), 2004.
[27] K. Wang, G. Cretu, and S. J. Stolfo, “Anomalous payload-based worm detection and signature generation,” in Proc. of Recent

Advances in Intrusion Detection (RAID), 2005.
[28] R. Vargiya and P. Chan, “Boundary detection in tokenizing network application payload for anomaly detection,” in Proc. of

ICDM Workshop on Data Mining for Computer Security (DMSEC), 2003.
[29] M. Cost, J. Crowcroft, M. Castro, A. Rowstron, L. Zhou, L. Zhang, and P. Barham, “Vigilante: End-to-end containment of

internet worms,” in Proc. of ACM Symposium on Operating System Principles (SOSP), 2005.
[30] A. Pasupulati et al., “Buttercup: On network-based detection of polymorphic buffer overflow vulnerabilities,” in Proc. of

IEEE/IFIP Network Operations and Management Symposium (NOMS), 2004.
[31] F. Hsu and T. Chiueh, “Ctcp: A centralized TCP/IP architecture for networking security,” in Proc. of ACSAC, 2004.
[32] X. Wang et al., “Sigfree: A signature-free buffer overflow attack blocker,” in Proc. of USENIX Security Symposium, 2006.

18



[33] R. Chinchani and E. Berg, “A fast static analysis approach to detect exploit code inside network flows,” in Proc. of Recent
Advances in Intrusion Detection (RAID), 2005.

[34] Critical Solutions Ltd., “Critical TAPs: Ethernet splitters designed for IDS,” http://www.criticaltap.com.
[35] V. Yegneswaran, P. Barford, and D. Plonka, “On the design and use of internet sinks for network abuse monitoring,” in Proc.

of RAID, 2004.
[36] Michael Bailey, Evan Cooke, Farnam Jahanian, Jose Nazario, and David Watson, “The internet motion sensor: A distributed

blackhole monitoring system,” in Proc. of NDSS, 2005.
[37] W. Cui, V. Paxson, and N. Weaver, “Gq: Realizing a system to catch worms in a quarter million places,” Tech. Rep. TR-06-004,

ICSI, 2006.
[38] Y. Gao, Z. Li, and Y. Chen, “A dos resilient flow-level intrusion detection approach for high-speed networks,” in Proc. of the

IEEE International Conference on Distributed Computing Systems (ICDCS), 2006.
[39] R. Pang, V. Paxson, R. Sommer, and L. Peterson, “binpac: A yacc for writing application protocol parsers,” in Proc. of

ACM/USENIX Internet Measurement Conference, 2006.
[40] “The ethereal network analyzer,” http://www.ethereal.com/.
[41] P. V. Mockapetris and K. Dunlap, “Development of the domain name system,” in Proceedings of ACM SIGCOMM ’88. ACM,

August 1988.
[42] Staal A. Vinterbo, “Maximum k-intersection, edge labeled multigraph max capacity k-path, and max factor k-gcd are all

NP-hard,” Tech. Rep., Decision Systems Group,Harvard Medical School, 2002.
[43] Z. Li, M. Sanghi, Y. Chen, M. Kao, , and B. Chavez, “Hamsa: Fast signature generation for zero-day polymorphic worms with

provable attack resilience,” in Proc. of IEEE Symposium on Security and Privacy, 2006.
[44] V. Paxson, K. Asanovic, S. Dharmapurikar, J. Lockwood, R. Pang, R. Sommer, and N. Weaver, “Rethinking hardware support

for network analysis and intrusion prevention,” in Proc. of USENIX Hot Security, 2006.
[45] Radware Inc., “Introducing 1000X Security Switching,” http://www.radware.com/content/products/

application_switches/ss/default%.asp.

A Proofs
Proofs of Performance Bounds with Crafted Noises

Lemma 1. If the best approximated signature has zero false positive, in any iteration of LOOP1, the coverage of the
output signature in that iteration |Mi{s′}|

|M| should be larger than or equal the coverage of the remaining true worms
|M1

i |
|M| .

Proof. Let the output signature during the ith iteration be s′i. Let the best approximated signature be s. Let the suspicious
pool right before ith iteration be Mi. Let Hi denote the statement that |Mi{s′

i
}|/|M| ≥ |M1

i |
|M| = α′ where α′ is the

remaining coverage of the true worms.
If the approximated signature s has been output, α′ = 0, so Hi is true. Otherwise, if Hi is not true, |Mi{s′

i
}| <

|M1
i |. Since |M1

i | ≤ |Mis|, s is better than s′i which cannot happen. Therefore Hi is true in all cases.

Lemma 2. If the best approximated signature has non-zero false positive, in any iteration of LOOP2, the coverage of
the output signature in that iteration |Mi{s′}|

|M| should be larger than or equal the coverage of the remaining true worms
|M1

i |
|M| .

Proof Sketch. The proof is the same as that of Lemma 1, so we omit it here.

Proof of Theorem 3
Proof. Let the best approximated signature be s. |M1

{s}|

|M1| = 1 and FP{s} ≤ FP0. Let the signature set we find in
LOOP1 be Ω1. Let the signature set found in LOOP2 be Ω2 = Ω − Ω1.

After LOOP2 the residue of true worm samples |R| < γ · |M|. This can be proved with a similar way as in
Theorem 2.

Therefore,|M1
Ω| = |M1−R| = |M1|−|R| > |M1|−γ · |M|. Since |M1|

|M| = α, Hence |M1

Ω
|

|M1| > 1− γ

α
. Therefore,

FNΩ < γ

α
.

After LOOP1, let the remaining suspicious pool be M′. |M′2| = |M2| − |M2
Ω1

|. Let the signature outputted in
the first iteration of LOOP2 be s′. According to Lemma 2, |M′

{s′}| ≥ |M′1|. Therefore the size of the total remaining
portion of the suspicious pool after the first iteration of LOOP2 is |M′−M′

{s′}| = |M′|−|M′
{s′}| ≤ |M′|−|M′1| =

19



|M′2| = |M2| − |M2
Ω1
|.

Since in LOOP2 each iteration needs to improve coverage by γ,we have at most b |M′−M′
{s′}

|

γ·|M| c ≤ b
|M2|−|M2

Ω1
|

γ·|M| c ≤

b |M2|
γ·|M|c = b 1−α

γ
c more iterations. For LOOP2 totally we have at most b 1−α

γ
c + 1 iterations. Each iteration introduces

at most false positive FP0. Therefore FPΩ = FPΩ2
≤ FP0 · (b

1−α
γ

c + 1).

Proofs of Performance Bounds without Crafted Noises
Proof of Theorem 4
Proof Sketch. The proof is by reduction from Theorem 5 with FP0 = 0

Proof of Theorem 5
Proof. Let the best approximated signature to be s. Suppose in LOOP1, we find Ω1. After removing the samples which
have already been covered by Ω1, let the remaining suspicious pool be M′, and let the true worms in it be M′1, and the
noise in it be M′2 = M′ −M′1. Let the |M′1|

|M| = α′.
In LOOP2, let the field selected in the first iteration be f ′

1, and the corresponding signature to be s′. The attacker
might not want we output s; otherwise we will not have any false negatives. Therefore |M′

{s′}| ≥ |M′
{s}|. Since the

best approximated signature s will cover all the remaining worms, |M′
{s}| ≥ α′ · |M|. Therefore, |M′

{s′}| ≥ α′ · |M|.
Since FP{s′} ≤ FP0 and the distribution of fields in M′2 is the same as that in N , |M′2

{s′}| ≤ FP0 · |M′2|. Since
|M′2| ≤ |M2| and |M2| = (1 − α) · |M|, |M′2| ≤ (1 − α) · |M|. Therefore,|M′2

{s′}| ≤ FP0 · (1 − α) · |M|.
So we have |M′1

{s′}| = |M′
{s′}−M′2

{s′}| = |M′
{s′}|−|M′2

{s′}| ≥ α′ ·|M|−|M′2
{s′}| ≥ α′ ·|M|−FP0 ·(1−α)·|M|.

Let the remaining suspicious pool at this stage be Mr. Denote the remaining true worm flows as M1
r and the

remaining noises as M2
r = Mr −M1

r. Since we know s′ has to cover more than α′ · |M|−FP0 · (1−α) · |M| worms,
after removing the worms covered by s′, the remaining ones |M1

r| ≤ FP0 · (1 − α) · |M|. With Step 1 algorithm, for
any remaining signature candidates s, |M2

r{s}| ≤ FP0 · |M2
r|. Since |M2

r| ≤ |M2|, |M2
r{s}| ≤ FP0 · |M2|. Since

|M2| = (1−α)·|M|, |M2
r{s}| ≤ FP0 ·(1−α)·|M|. Therefore, |Mr{s}| = |M1

r{s}+M2
r{s}| = |M1

r{s}|+|M2
r{s}| ≤

2 · FP0 · (1 − α) · |M| ≤ 2 · FP0 · |M|. Choose parameters to let γ > 2 · FP0, so no other signature candidates can
meet the output standard.

Therefore Ω = Ω1 ∪ {s′}. FPΩ1
= 0, so we have FPΩ = FP{s′}. Since the remaining worms are M1

r, |M1
Ω| =

|M1 −M1
r| = |M1| − |M1

r|. We know |M1
r| ≤ FP0 · (1− α) · |M|, so |M1

Ω| ≥ |M1| − FP0 · (1− α) · |M|. Since
|M1|
|M| = α, |M1

Ω| ≥ |M1| − FP0·(1−α)
α

· |M1|. Therefore, |M1

Ω
|

|M1| ≥ 1 − FP0·
1−α

α
.

Therefore, FNΩ ≤ FP0·
1−α

α
and FPΩ = FP{s′} ≤ FP0.

Note that what we have proved is for single worm cases, but it is trivial to extend the proof to multiple worms cases.
The difference is that multiple worm cases need multiple iterations. Each iteration is for one worm.

20


